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Abstract. Given a one-dimensional cellular automaton rule f, a block transform of
§ iz atule T, f such that there exists between the limit sets of both rules a bijection
that replaces each site value z in a configuration belonging to the limit set of f with
a string #® = zz .- -z of length b in the corresponding configuration belonging to the
limit set of Tpf. If f is totalistic, there exists a unique totalistic block transform and
a large number of non-totalistic block transforms T}, f. If f is not totalistic, there are
no totalistic block transforms but there still exists a large number of non-totalistic
block transforms. Their number increases very rapidly with the block size & and the
range r of f. The range of Tpf may be any integer greater than or equal to rb. Many
block transforms are studied. The evolution according to rule Tf towards its limit
set is discussed in terms of the annihilation of defects. These defects are oiten simply
related to the defects characterizing the evolution according to rule f.

1. Introduction

A cellular automaton (CA) consists of a lattice with a discrete variable at each site.
Each site variable evolves in discrete time steps according to a definite rule that
involves the values of neighbouring site variables at previous time steps. The site vari-
ables are updated simultaneously. CA provide simple models for a variety of complex
systems containing large numbers of identical elements with local interactions (Farmer
ef al 1984, Wolfram 1986, Manneville e? af 1989, Gutowitz 1990).

CA may be considered as discrete dynamical systems. Let 5:Z x N — {0,1} be a
function that satisfies the equation

(Vie Z) (VteN) s(i,t+1) = f(s(i —r,t),s(i = r + 1,1},...,8(i +r,t))
and such that
(VieZ) s{i,0) = sy(3)

where N is the set of non-negative integers, Z is the set of all integers and s: Z — {0, 1}
is a given function that specifies the initial condition. Such a discrete dynamical system
is a one-dimensional CA. The map f:{0,1}*"*! — {0, 1} determines the dynamics. It
is referred to as the local rule of the CA. The positive integer r is the range of the rule.
The function S,:% — s(i,t) is the state of the CA at time ¢. S = {0,1}? is the state
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space. An element of the state space is also called a configuration. Since the state at
time ¢ + 1 is entirely determined by the state at time ¢t and the rule f, f induces a
mapping f: & — & such that

St+1 = f(St)-

f is called the global rule of the CA.

Based on investigations of a large sample of CA, Wolfram (1984a,b) has shown that,
according to their asymptotic behaviour, CA rules appear to fall into four qualitative
classes. Class-1 CA evolve from almost all initial states to a unique homogeneous state
in which all sites have the same value. Class-2 CA yield separated simple stable or
periodic structures. Class-3 CA exhibit chaotic patterns. The statistical properties of
these patterns are typically the same for almost all initial states. In particular, the
density of non-zero site variables tends to a fixed value as time ¢ tends to co. The
evolution of class-4 CA leads to complex localized or propagating structures.

Consider a rule f; its limit set is defined by

Ay

H i
A FS)

() £(S).

>0

Ay is clearly invariant, i.e. f(A;) = A,. Since any f-invariant subset belongs to A,
the limit set is the maximal f-invariant subset of S.

This paper concentrates on one aspect of CA theory. It deals with block transfor-
mations of one-dimensional GA rules, It is a step towards the solution of a problem
stated by Wolfram (1985) concerning the scaling properties of cA. Given a CA rule f,
the idea is to replace 0 and 1, in the spatio-temporal pattern generated by f, by two
blocks B, and By, respectively, and search if the resulting pattern could be generated
by a local CA rule F said to be a ‘block transform’ of f.

Here we only consider the case where B, and B, are twa sequences of identical
digits of the same length.

In what follows, given a rule f and a positive integer b, we call the ‘block transform’
of f arule T, f such that

Ag,y = Hy (&) (1)
where the mapping I/, § — § is a homomorphism defined by

(Vl'yZES) Hb(...ggyz...)=...mbybzb...

z® stands for = repeated b times; for instance, 23
the following criterion.

T, f is a block transform of f if it satisfies the following two conditions.

(i)

= zxz. In practice, we prefer to use

T,fo H, = H, of. (2)



Block transformations of cellular automaton rules 1851

(ii) The number of sequences of zeros and ones, whose length is not a multiple of
b, in any configuration S;, generated by T} f after ¢ time steps, tends to zero as t tends
to 0o,

Note that it follows from relation (2) that 7,f leaves H,(A,} invariant, and since
a limit set is a maximal invariant subset

H, (Af) C Arny (3)

The equality results from the second condition about the decrease of the numbers of
‘defects’ (i.e. sequences of zeros and ones whose lengths are not a multiple of ).

After sufficiently many iterations the spatio-temporal patterns generated by rules
f and T,f cannot be distinguished after a space contraction by a factor b of the
latter. This implies that rules f and T, f belong to the same class. Moreover, for
class-3 CA, the asymptotic density of non-zero site variables is invariant under a block
transformation. If the size of the lattice is large but finite, say equal to N, the
parameter b defines a characteristic length, and the probability distribution of the
asymptotic density, as a function of § and N, should be homogeneous, i.e. a function
of the ratio b/N.

];‘ rnn] l 1 1 1
Formal language theory may be used to obtain more complete characterizations

of limit sets (Woifram 1984b). A language is a set of words formed of letters in a
finite alphabet according to definite grammatical rules (Hopcroft and Ullman 1969,
Denning ef al 1978). Four types of formal grammars can be specified. The simplest
type is said to be regular. Languages generated by regular grammars may be specified
by finite-state machines represented by finite directed graphs (figure 1).

0 1 01 1
(a) (b)

Figure 1. Graphs representing reguiar grammars. (o} Range-1 totalistic rule 6. {5)
Range-2 totalistic rule 30.

The limit set of a given rule may be regarded as a formal language. The alphabet
of terminal letters is {0,1}. All words in this alphabet have infinite length. Since all
four classes of formal languages are closed under the homomeorphism H, (Hopcroft
and Ullman 1969), the languages A; and Ar, , belong to the same class. In particular,
if a limit set A, is a regular language, then the limit set Ay, ; is also regular, and its
graph is obtained by replacing each arc by a path consisting of b arcs. If the original
arc carries the terminal letter a, all arcs in the path carry the letter a.

A rule f is said to be totalistic {Wolfram 1984a) if, for all integers i and all positive
integers ¢, there exists a function f*°*: {0,1,...,2r 4+ 1} — {0, 1} such that

s(it+1) = f(s(i —rt),s(i = r+1,0),...,8(i+ 1r,1))
= frUs(i — rt) +s(i — v+ 1,8) + -+ 5(i + 7,1)). (4)
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In this case, the rule f may be specified by a numerical code

2r+1

Cf — Z 2nftot(ﬂ)_

n=0
For instance, the code of the range-2 rule f defined by

1 f0<z +eg+z3+2,+2, <5
0 otherwise

(5)

f(a:l,xz,m:;,zq,%) = {

isCy=24224+2°+2'=30.
Given a range-r totalistic rule f, for all positive integers b, there exists a unique
range-rb totalistic rule T} f, which satisfies the relation (2)

beo Hb = Hbof.
Let us first establish this result for r = 1 and b = 2. In this particular case, in

order to satisfy equation (2) given a totalistic rule f we have to determine a totalistic
rule T, f such that

Tof(zy, 2,2, 29,73) = Tzf("’l: Ty Ty, T3, T5) = fl21,2,,23) (6)

for all (z,,z,,3) € {0,1}%. Since f and T, f are totalistic, there exist two functions
£°¢:{0,1,2,3} — {0,1} and T,f**:{0,1,2,3,4,5} — {0,1} such that

f(zy, 24, 23) = [*%(zy + 23 + 23)
Ty f (21, &9s 23, 24,25) = T f (21 + 29 + 25+ 24 + &)

for all z; € {0,1} (i = 1,2,3,4,5). From (6), it follows that T, f*" satisfies the
equations

T, f*(6) = f**(3) (7)
T f*(4) = Tof'°(3) = £*(2) (8)
T, f*(2) = T f"'(1) = (1) (9)
T, f°40) = f**(0). (10)

These relations determine a unique function 7, f*". If the numerical code of rule f is

3
Cf — Z 2ﬂft0t(n)
n=0
the numerical code of rule 7,f is
CTgf = 20ftot(0) + (21 + 22)ftot(1) + (23 + 24)ftot(2) + 25ftot(3)_

For instance, if Cy =6 =2+ 22 then Cr,; =2+ 22 4 23 4+ 24 = 30.
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The result obtained for » = 1 and b = 2 can be extended to all positive integral
values of r and b. Given a range-r totalistic rule f such that

(21,20, 29pp1) = F (2 + 2o+ - + 79 py)

there exist a unique range-rb totalistic rule T} f that satisfies the equation T,f o I, =
H,of If rule

T, f is totalistic, there exists a function 7 f** such that

=Co

T f (2,29, 2oy yy) = Tif (2 2y + o+ T py)

then it satisfies the following equations:

T,f°4(0) = f*°4(0) (11)
TP (2r—k)b) = =T f((2r —k— Db+ 1) = f% % — k) (12)
T f2rh + 1) = Y 2r + 1) (13)
where k in (12) takes the values 0,1,...,2r — 1. From these relations it follows that

if the numerical code of rule f is

2r+1
C; =) 2% n) (14)
n=0
then the numerical code of rule T} f is
2r—1
Cbe = 20ft°t(0) + Z 2(2”'_’5—1)54'1(2!’ _ l)ftot(Qr _ k) + 22rb+lfcot(2r + 1) (15)
k=0

The numerical code of rule T} f is easy to derive from the binary representation of the
numerical code of rule f. If, for instance, f is the range-2 totalistic rule 50 whose
binary representation is 110010, the binary representation of the numerical code of
the range-4 totalistic rule 7, f is 1110000110. That is, Cr, , = 902.

On the set {T,[b € N} of all transformations, it is possible to define the following
combination law:

Tb,Tb, = Tblbz- (16)

This law is associative, there exists an identity, and each element has a left inverse
but, in general, no right inverse.

Note that we have not proved that the limit set of T, f is H, (A,), but oniy that
this set is invariant under T3f. Since a limit set is a maximal invariant subset, it
follows that

Hy(A;) € Agy

As stated in the introduction, the equality requires another condition: the number of
sequences of zeros and ones, whose length is not a multiple of b, in any configuration
S,, generated by T f after £ time steps, tends to zero as ¢ tends to co.

Numerical simulations seem to indicate that this latter condition is fulfilled for all
totalistic rules T} f that satisfy the equation (2). This is probably not too surprising
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since T, f was not only required to fulfil equation (2), but was also required to be
totalistic. This strong requirement led to a unique block transform of f: T, f.

Consider, for instance, range-1 totalistic rule 6, whose spatio-temporal pattern is
represented in figure 2(a). Its limit set is a regular language. An infinite word in this
language, whose grammar is represented in figure 1(a), is a concatenation of strings of
zeros and ones of even lengths, The transform of rule 6 for b = 2 is range-2 totalistic
rule 30. Its limit set is a regular language whose grammar is shown in figure 1(4)
(Boccara et af 1991a). If we look carefully at figure 2(5), which represents the spatio-
temporal pattern generated by the evolution according to the range-2 totalistic rule 30,
we observe a clear tendency to form rapidly blocks of zeros and ones whose lengths are
a multiple of 4. This feature is even more evident in figure 2(c). After a contraction
by a factor two in the space direction, each block of length two is represented by a unit
square, and block formation explains why the resulting pattern looks similar to the
pattern corresponding to b = 1 shown in figure 2(a). More generally, a configuration
belonging to the limit set of range-r totalistic rule 22! — 2, defined by

I, H0<z +ay+-+2zy,,<2rt1

f22r+:_2($ Laogyeoy & ):{ .
Do T 0 otherwise

consists of alternating sequences of zeros and ones whose lengths are multiple of 2r
(Boccara et al 1991a). For example, figure 2(d) represents the spatio-temporal pattern
generated by the evolution according to range-3 totalistic rule 126 (the transform of
range-1 totalistic rule 6 for b = 3} with space contraction by a factor three.

Of course, after a finite number of time steps, block formation is not perfect. In
many cases, after a few tens of time steps, the only remaining ‘defects’ with respect
to block formation are simple to describe. This is particularly true for the previcus
examples because their limit sets are easy to characterize (Boccara ef af 1991a). A
configuration belonging to the attractor of range-1 totalistic rule 6 is a concatenation
of pairs of zeros and pairs of ones distributed at random with equal probabilities. After
a few time steps, the evolution towards the attractor occurs through the elimination of
defects or ‘kinks’ (Grassberger 1983) of only one type corresponding to odd sequences
of zeros or ones (figure 2(a)). Asshown by Grassberger, these defects exhibit a diffusive
motion, When two defects meet they annihilate. Their number decreases ast~/2 as a
function of time t. For range-r totalistic rule 22" ¥! — 2, any sequence of zeros or ones,
whose length £ is not a multiple of 2r, contains a defect. A defect is characterized by
an integer d {0 < d < 2r) equal to £ mod 2r. Defects d; and d, combine according to
the law (figures 2(c) and 2(d))

d=d;+d, mod2r.

Endowed with the above combination law, the set of all possible defects and the ‘null-
defect’ d = 0 (which represents the absence of any defect) is isomorphic to the cyclic
group Z/2r.

As a trivial generalization to rule 18 studied by Grassberger (1983), these defects
exhibit a diffusive motion, and their number decreases as {~'/2 as a function of time.
Hence, equation {2) with the property that the number of defects tends to 0 as? -+ oo
implies that 7} f is a block transform of f in the sense of equation (1).

In most cases, the defects are not so easy to characterize and to follow in the
spatio-temporal patterns because the complexity of the attractor is higher. In many
cases, however, we have observed that the ‘average number of defects’ ngy defined as
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'.ihi'-i,'k-,'t
=i

Figure 2, Spatio-temporal patterns generated by the evolution according to (2} (top
lefi) range-1 totalistic rule 8, (b) (top right) range-2 totalistic rule 30 with no space
contraction, (¢} (bottomn left) range-2 totalistic rule 30 with space contraction by a
factor & = 2, {d) (bottom right) range 3 totalistic rule 126 with space conbraction by
a factor & = 3. Initial configurations are random. Numbers in (b), (¢) and (d) refer to
defects; they combine between themselves according to the law: d = dy + d; mod 2r.
In all spatio-temporal pattems, time is oriented downward.

the sum of all sequences of zeros and ones, whose length is not a multiple of b, divided
by the number of sites, decreases as £~ /2, This is sufficient to prove that 7}, is a block
transformation. We give two examples. Figures 3(a) and (b) show the spatio-temporal
patterns generated by the evolution of, respectively, range-1 totalistic rule 2 and its
block transform for & = 2, which is range-2 totalistic rule 6, with a space contraction
by a factor two. Figure 3(c) shows the average number of defects n, as a function of
time for the latter. Figures 4(a)-(c) use the same conventions for range-2 totalistic
rule 50 and its block transform for b = 2, which is range-4 totalistic rule 902.
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Figure 3. Spatio-temporal patterns generated by the evolution according to (a)
{top Jeft) range-1 totalistic rule 2, (b) {top right) range-2 totalistic rule 6 with space
contraction by & factor two. Initial configurations are randomly generated. (¢} (bot-
tom left) Asymptotic behaviour of the average number of defects nq; the size of the
lattice is 104; periodic boundary conditions were used.

3. More general rules

In the previous section, given a range-r totalistic rule f, we proved that, for ali positive
integers b, there exists a unique range-rb totalistic ruie T, f, which satisfies the equation
T,foH, = H,of. If we do not require rule T3 f to be totalistic, it is possible to establish
the following more general result.

Given a range-r rule f, for all positive integers b, there exist Q2P 242 pap ge-
7b rules that satisfy the equation T,f o H, = H, of. If f is not totalistic, none of these
rules is totalistic.

Consider first the case r = 1 and b = 2. In order to fulfil the relation T\f o H, =
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Figure 4. Spatic-temporal patterns generated by the evolution according to (a)
(top left) range-2 totalistic rule 50, (6) (top right) range-4 totalistic rule 902 with
space contraction by a factor two. Initial configurations are randomly generated. (c)
(bottom left) Asymptotic behaviour of the average number of defects ng; the size of
the lattice is 101,

Hyof, the range-2 rule T, f must satisfy (6). That is, for all (z,,z,,z;) € {0,1}®

Ty f(24, 1, 29,24, 83) = Tyf(2y, 25, 25,23, T3) = f(7, 24, 25). (17)
These relations do not determine a unique function

(21, 2y, 83, 24,25) — Ty f (2}, 2, T4, 24, T5)-

Only the images of 14 five-tuples (z,,2,,24, %4, T5) are determined by (17). The
images of the remaining 18 five-tuples are arbitrary. There exist, therefore, 2'% ryles
T, f that fulfil the relation T,f o H, = H, of. 2'? of them are legal. If we want T, f to
be totalistic, then there must exist a function F:{0,1,2,3,4,5} — {0,1} such that

Flz, + Tyt oyt x,+2g) = T, f(2,,2,, 24,24, 75)
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with
F(O) = f(oiolo)
F(1) = F@ = f£(0,0,1)
F(2) = £(0,1,0)
F(3) = F(4) = f([]?]'ll) (18)
F(1) = F(2) = [f(1,0,0)
FE) = f10])
F3) = F4) = f(1,1,0)
F(5) = f(L,1,1).

These relations show that F exists if and only if

£(0,0,1) = f£(0,1,0) = f(1,0,0)
f(0,1,1) = f(1,0,1) = f(1,1,0).

That is, rule T, f is totalistic if, and only if, f is totalistic.

In order to test block formation we have studied the 2!2 = 4096 range-2 legal rules
corresponding to range-1 rule 18 for & = 2 on a 8 x 10° site lattice. For each of these
rules the average number of defects ny with respect to block formation was measured
after 102, 10® and 10% time steps. The results are summarized in figure 5. The full
curve represents the number n(z) of rules having, after 10% iterations, a number of
defects ny smaller than z. The chain curve represents the number n'(z) of rules having,
after 10 iterations, a number of defects n4 such that =z — Az < ny < = + Az, where
the finite step Az has been arbitrarily chosen equal to 0.0005. In the limit Az — 0,
n'(x) is the derivative of n(z)} and represents the ‘density of rules’ having a number
of defects equal to 2. Three regions can be roughly distinguished.

(i) Rules corresponding to region {A) have a small number of defects: 2 < 0.03 after
103 time steps. Measurements of n; at 102, 10® and 10* tine steps are compatible with
a decrease of the number of defects as t=1/2 as observed in figures 3(c) and 4(c). Such
rules (about 25% of these 4096 rules) are block transforms of range-1rule 18 with = 2.
In many cases the defects are very simple and obey combination laws as described in
the previous section. For example, figures 6(a) and (&) show, respectively, the spatio-
temporal pattern for range-1 rule 18 and range-2 rule 87493422, The defects are
frequently more complicated, but it is still possible to describe their interactions. For
example, figure 7(a) shows the spatio-temporal pattern generated by the evolution
of range-2 rule 769861902, in which some ‘extended’ defects appear (Boccara et al
1991b). Their number also decreases as t=1/2 as ¢ tends to cc (figure 7(5)), although
large fluctuations of n, are observed, in relation with the creation and annihilation of
extended defects (figure 7(a)).

(il) Rules corresponding to region (C) generate intricate spatio-temporal patterns
that look very different from the spatio-temporal pattern generated by range-1 rule 18
(figure 8). The number of defects n, is larger than 15%. This represents about 60%
of all 4096 rules.

£y T 11 1 S | s X n e FTIN dbhaun o om eartoin
(111} For the rules corresponding to the intermediate region (B) there 1s a certain
tendency to block formation in some region of the spatio-temporal pattern, but the

defects are intricately interwoven and they do not seem to disappear (figure 9), (their
number is roughly the same after 102, 10® and 10* iterations).

These results seem to be valid for most block transformations of class-3 range-
1 legal rules for b = 2. However, in the case of range-1 rule 54 a rather peculiar
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Figure 5. A study of the 4096 legal range-2 rules satisfying the condition T;{ oHy =
Hyof to be block transforms with b = 2 of range-1 rule 18. The full curve represents
the number of rules n{z) having, after 1000 iterations a2 number of defects ng, with
respect to block-formation, smaller than z. The chain curve represents the derivative
of n(x) or, more precisely, the number of rules having after 1000 iterations a number
of defects ny such that = — 0.0005 < ng < « 4 0.0005. Three regions can be roughly
distinguished. Rules corresponding to region (A} have a small number of defects,
# < 0.03, decreasing roughly a5 t71/2 a3 a function of time; they are block transforms
of range-1 rule 18 (figures 6 and 7). Rules corresponding to region (C) have intricate
patterns, very different from the patiern generated by the range-1 rule 18 (figure
8). Rules corresponding to the intermediate region (B) show a certain tendency to
block formation in some region of the spatio-temporal pattern, but the defects are
intricately inierwoven and they do not seem to disappear—their number is roughly
constant from 102 to 10* iterations {figure 9).

Figure 6. Spatio-temporal pattems generated by the evolution according to (a) (top
left) range-1 rule 18, {b) (top right} range-2 rule 87493422 with space contraction
by a factor two. Initial configurations are randomly generated. Numbers refer to
defects; they combine according to the law: d = di + d3 mod 4.

behaviour is observed. Configurations generated by the evolution according to rule 54
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Figure 7. (a) (top left) Spatio-temporal patterns generated by the evolution ac-
cording to range-2 rule 769861902 with space contraction by a factor two. Initial
configurations are randomly generated. Numbers refer to defects. Defects 1 and 2
are similar to those observed in the previous figure. Defect 3 extends on both sides
with velocity 1; it can be annihilated through the interaction with other defects. (b)
(top right) Asymptotic behaviour of the average number of defects ng. nq is defined
here as the average number of sequences of zeros and ones whose length is not equal
to 2 modulo 4. The size of the lattice is 10*%; since type 3 defects may have large
extension, values of ng were averaged over 500 time steps.

Pt i

irtp
f Ry
'I’LI . Y Lv# I‘:

4
e iUt

Figure 8. Spatio-temporal pattern generated by the evolution according to range-2
rule 700 802 830 with space contraction by a factor two, after 102 iterations. Although
the equation Tif o Hy, = Hp o f is fulfilled, there is no block formation.

may be interpreted in terms of particle-like structures evolving in a regular background
(Boccara et al 1991b). Starting from a random initial configuration, a spatio-temporal
pattern generated by this rule is shown in figure 10(e). The background is periodic
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Figure 9. Spatio-temporal pattern generated by the evolution according to range-2
rule 219500334 with space contraction by a factor two, after 10° iterations. The
average number of defects ng = 7% does not decrease appreciably from 16% to 10*
iterations.

in space and time, both periods being equal to 4, Three types of particles may be
distinguished. Two of them are non-propagating and periodic in time. Their periods
are equal to 4. They are denoted, respectively, by g, and g, (g stands for ‘gutter’)
according to whether they consist of sequences of zeros of even or odd lengths. There
exists also a propagating particle w (w stands for ‘wall’). This particle may propagate
to the right or to the left. Tts velocity is equal to 1.

For many range-2 legal rules which are block transforms of range-1 rule 54, after
a short transient time, all defects with respect to block formation are ‘trapped’ in
the gutters g, as shown in figure 10{b). Hence, the motion of these defects is then
directly related to the motion of the particles g, g, and w which are not diffusive.
The number of defects decreases much more slowly than t=1/2, Actually, it decreases
approximately as ¢~7 with v € 1/2 (Boccara el af 1691b).

These results may be extended to all positive integral values of » and & Given
a range-r rule f and a positive integer b, relations similar to (17) determine the
images of only 227+1p — 2 ¢(2rb 4 1)-tuples’ among the 22"**+1, Therefore, there exist
92221042 Lange-rb rules that fulfil the condition T,f o H, = H, o f. Relations
similar to (18) show that if f is not totalistic none of these rules is totalistic.

4. Block transformations of arbitrary range

Given a range-r rule f and a block size b, we have found that there exist range-rd rules
that satisfy the refation T,f o A, = H, of. In fact, for any positive integer it > rb,
there exist range-R rules that fuifil the condition T3f o I, = Hyof.

We shall establish this result for # = 1, 5 = 2 and & = 3. The generalization is
straightforward.

In order to fulfil the condition T,f o H, = H, o f, the range-3 rule T, f musi
satisfy the following relations, which are the analogue of (6). That is, for all



Figure 10. Spatio-temporal patterns generated by the evolution according to (a)
(top left) range-1 rule 54; it can be described through ‘particles’ as ‘walls’ (w), and
even (ge) and odd (g,) ‘gutters’, interacting on a periodic background. (b) (top right)
range-2 rule 118167626 with space contraction by a factor two, after 90 time steps.
Initial configuration were randomly generated. After a few tens of time steps, the
only remaining defects are gF and ge which can be considered to be even ‘gutters’
which have trapped complementary defects.

(21, %, %3, T4, 25) € {0,1}°
Tzf(-"-”la L9, Tn,Tz,T3, Ly, 1'4) = Tzf(zzazza T3 T3, Ty Ty, -"55) = f(z'zs T3, “54)- (19)

These relations do not determine a unique function

et

ré AY A Y
(21,80, 83, Ty, X5, g, L) b L JIT 4, Ty, T3, T4, L5, g T7)

Only the images of 30 ‘seven-tuples’ (x,, z,, 24, 24, Z5, T4, Z7) are determined by (19).
The images of the remaining 98 ‘seven-tuples’ are arbitrary. There exist, therefore,
298 rules T, f that fulfil the condition Tyfo H, = H,of. If we want T, f to be totalistic,
then there must exist a function F:{0,1,2,3,4,5,6,7} — {0,1} such that

Flay + 2o+ 83+ 24+ 25+ @6 + 27) = T (21, 25, 23,84, 25, Te: 27)

with
FO) = F(1) = f(0,0,0)
F(2) = F3) = f(0,0,1)
F(2) = F@3) = f(0,1,0)
F(4) = F(5) = f{0,1,1) (20)
F(2) = F(3) = f(1,0,0)
F(4) = F() = f(1,0,1)
F(4) = F(B) = [f(1,1,0)
F6) = F(T) = f(1,1,1).
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These relations show that F exists if and only if

£(0,0,1) = £(0,1,0) = F(1,0,0)
£(0,1,1) = £(1,0,1) = £(1,1,0).

That is, rule T;, f is totalistic if and only if f is totalistic.
If Fig tntalictise rolatiane fHNY choaw that thoce awdok o tiioesa wnnwes 2 4
AL 1D UUGHEIULL,; LULauIUD \AU} 2LV W {llau LUCIT CTAIDL a ullll.luc J.ausc—u u

rule T, f. If the numerical code of rule f is

3

C_f = Zznftot(n)

n=0

where f*°* is such that, for all (z,,z,,z,;) € {0,1}®
F(2), 29, 23) = f*%) + 2, + 25)

the numerical code of rule 7, f is

Cr,y = (2

For instance, if C;, = 6 =2 + 92 then Cry = 22 4 93 4 924 1L 95 = 0.

The generalization of all these results is not very difficult: given a range-r rule f
and an integer b > 1, for all positive integers B > rb, there exist range-R rules that
satisfy the equation T;f o H, = H, of. If f is not totalistic, none of these rules is
totalistic. If f is totalistic, then there exists a unique totalistic range-R rule T, f that
fulfils the condition T,f o H, = H,of.

As in the previous section 1t is difficult to find further criteria to identify, among
all the rules obeying the equation T,f o H, = H; of, the rules that are really block
transforms. By imposing more constraints on T} f it has, however, been possible to
define a particular non-totalistic bleck transform. This particular block transformation
has been defined and studied in a recent paper by Boccara {1989). It is characterized
by a positive odd integer b. In order to build up this transformation T}, consider the
set

{s(G — (5—1)/2,8),5( - (5-3)/2,1),...,s(7 + (b — 1)/2,8)}

which constitutes a block of site variables at time t. Its length is &, and it is centred at
7. To a block centred at j associate B(j, ), called a block variable, such that (majority
rule)

. 1 if $y(j,1) > b/2
B(jt) = {0 if $,(4,¢) < b/2

where
Sy(4,t) = s(i—(b—1)/2,0) +s(j = (b-3)/2, )+ -+ s(j+(6—-1)/2,1).

With a range-r rule f associate a range-rb + (b — 1)/2 rule T} f, i.e. a rule involving
a (2r + 1)b neighbourhood, defined as follows. Divide the (2r + 1)b site variables in



1864 N Boccara and M Roger

2r + 1 blocks of length b. For each block determine the value of the corresponding
biock variable. Then the value at time t + 1 of site variable s(i,¢ + 1) given by rule
T,f i8, by definition, given by rule f applied to the block variables centred a4 ¢ + b,
where | = —r,—(r—1),...,r, at time t. For example, the transform of range-1 rule 18
for b = 3 is the range-4 rule 75 f,, such that

Tl = w A= 1
L35\ Ty — b
if and only if
r 4z, tzy<d T 4+ T+ T < T,+Tg+zg> 32
1 2 3 2 4 5 6 2 7 3 9 2
o
Ty 4z, 4Ty > 2 T, 4o+ < 3 Lot To 4 I,<
1 2 3 2 4 5 6 2 7 & g 2

5. Conclusion

Given a rule f, with limit set A, and a positive integer b, the rule T, f is a block
transform of f if its limit set Ay, , satisfies the relation (1)

Ary = Hi(Ay)
where the mapping H,:§ — § is a homomorphism defined by

Voozyz---€8) Hb("‘xyz"')='--xbybzb--.

z? stands for x repeated b times; for instance, &3

The condition (2)

= ITI.

TfoH,=H,of

to be satisfied for a block transform 7}, f to exist does not completely detertnine 7} f
if f is not totalistic. If f is totalistic, there exists a unique 7} f, and it seems that in
this case condition (2) is sufficient. If f is not totalistic, condition (2) is not sufficient.
Among the very large number of rules satisfying equation (2), only a fraction seems
to be block transforms and none of them is totalistic. The range of a block transform
T,f may be any integer greater than or equal to rb.

The evolution according to a block transform T, f towards its limit set has been
discussed in terms of annihilating defects. These defects are often simply related to
the defects characterizing the evolution according to rule f.
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