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Abstract. Given a onedimensional cellular automaton rule f ,  a block transform of 
f is a d e  Tbf such that there exists between the limit sets of both rulm a bijection 
that replaces each site value z in a configuration belon@ng to the limit set off  with 
a string zb = zz..  (1) of length b in the corresponding configuration belonging to the 
limit set of Tbf. U f is totalitic, there exists a unique totalistic block transform and 
a large number of non-totalistic block transforms Tbj,  I f f  is not totalistic. there are 
no totalistic block transforms but there still exists a large number of non-totalistic 
block transforms. Their number increase very rapidly with the block size b and the 
range I o f f .  The range of Tbf m a y  be any integer greater than or equal to rb. Many 
block transforms are studied. The evolution according to  rule Tbf towards its limit 
set is discussed in t e r m  of the annihilation of defects. These defects are often simply 
related to  the defects characterizing the evolution according to  rule f .  

1. Introduction 

A cellular automaton (CA) consists of a lattice with a discrete variable at  each site. 
Each site variable evolves in discrete time steps according to  a definite rule that 
involves the values of neighbouring site variables at  previous time steps. The site vari- 
ables are updated simultaneously. CA provide simple models for a variety of complex 
systems containing large numbers of identical elements with local interactions (Farmer 
et  al 1984, Wolfram 1986, Manneville e2  Q /  1989, Gutowitz 1990). 

CA may be considered as discrete dynamical systems. Let s: Z x W c) IO, I) be a 
function that satisfies the equation 

(Vi E Z) ( W E  m) s ( i , t  + I )  = f ( s ( i  - ~,t),s(i - r +  l , t ) , .  . . , s ( i + r , t ) )  

and such that 

(Vi  E Z) s(i, 0) = so(i) 

where N is the set of non-negative integers, Z is the set of all integers and so: Z -+ [O, 1)  
is a given function that specifies the initial condition. Such a discrete dynamical system 
is a one-dimensional CA. The map f :  [O,  1}2rt' -+ {O, l} determines the dynamics. I t  
is referred to as the local rule of the CA. The positive integer r is the range of the rule. 
The function St:i c s ( i , t )  is the state of the CA at  time t .  S = [O, I]' is the state 
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space. An element of the state space is also called a configuration. Since the state at 
time t + 1 is entirely determined by the state a t  time t and the rule f, f induces a 
mapping fS -+ S such that  

N Boccara and M Roger 

SI,, = f(SJ 

f is called the global rule of the CA. 
Based on investigations of a large sample of CA, Wolfram (1984a, b) has shown that,  

according to their asymptotic behaviour, CA rules appear to fall into four qualitative 
classes. Class-1 CA evolve from almost all initial states to a unique homogeneous state 
in which all sites have the same value. Class-2 CA yield separated simple stable or 
periodic structures. Class3 CA exhibit chaotic patterns. The statistical properties of 
these patterns are typically the same for almost all initial states. In particular, the 
density of non-zero site variables tends to a fixed value as time t tends t,o CO. The 
evolution of class-4 CA leads to complex localized or propagating structures. 

Consider a rule f; its limit set is defined by 

A, = , l i ~ f ‘ (S )  

= n f y S ) .  
I?, 

A, is clearly invariant, i.e. f (A,)  1 A,. Since any f-invariant subset belongs to A,, 
the limit bet is the maximal f-invariant subset of S. 

This paper concentrates on one aspect of CA theory. It deals with block transfor- 
mations of one-dimensional CA rules. It is a step towards the solution of a problem 
stated by Wolfram (1985) concerning the scaling properties of CA. Given a CA rule f ,  
the idea is to replace 0 and 1, in the spatic-temporal pattern generated by f, by two 
blocks E, and B,, respectively, and search if the resulting pattern could be generated 
by a local CA rule F said to be a ‘block transform’ o f f .  

nere we oniy consider the case where E, and E ,  are two sequences of identicai 
digits of the same length. 

In what follows, given a rule f and a positive integer b, we call the ‘block transform’ 
o f f  a rule Tbf such that 

-. 

ATbf = H b  (1) 

H,( .  . . z y r . .  .) = . . .,by’rb 

where the mapping H,: S - S is a homomorphism defined by 

(V.. . zyr  . . . E S) 

zb stands for z repeated b times; for instance, z3 = zzz. In practice, we prefer to use 
the following criterion. 

Tbf is a block transform o f f  if it satisfies the following two conditions. 
6 )  

Tbf o H ,  = H,of .  (2) 
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(ii) The number of sequences of zeros and ones, whose length is not a multiple of 
6 ,  in any configuration S,, generated by Tbf after t time steps, tends to zero as t tends 
to 03. 

Note that i t  follows from relation (2) that Tbf leaves H b ( A , )  invariant, and since 
a limit set is a maximal invariant subset 

H b  (3) 

The equality results from the second condition about the decrease of the numbers of 
'defects' (i.e. sequences of zeros and ones whose lengths are not a multiple of b) .  

After sufficiently many iterations the spati-temporal patterns generated by rules 
f and Tbf cannot be distinguished after a space contraction by a factor b of the 
latter. This implies that rules f and Tbf belong to the same class. Moreover, for 
class-3 CA, the asymptotic density of non-zero site variables is invariant under a block 
transformation. If the size of the lattice is large but finite, say equal to N, the 
parameter b defines a characteristic length, and the probability distribution of the 
asymptotic density, as a function of 6 and N ,  should be homogeneous, i.e. a function 
of the ratio b / N .  

of limit sets (Wolfram 1984b). A language is a set of words formed of letters in a 
finite alphabet according to definite grammatical rules (Hopcroft and Ullman 1969, 
Denning e t  a/ 1978). Four types of formal grammars can be specified. The simplest 
type is said to be regular. Languages generated by regular grammars may be specified 
by finite-state machines represented by finite directed graphs (figure 1). 

Fmnz! !angnage theory may be used to obtain more cm-p!ete characterisztions 

(a) ( b) 

I \ -  Figure i. Graphs representing reguiar granmars. l a ,  m g e - i  ioiaiiiic ruie 6. jb j  
Range-2 totalistic rule 30. 

The limit set of a given rule may be regarded as a formal language. The alphabet 
of terminal letters is {0,1). All words in this alphabet have infinite length. Since all 
four classes of formal languages ace closed under the homomorphism Hb (Hopcroft 
and Ullman 1969), the languages A, and ATb, belong t o  the same class. In particular, 
if a limit set A, is a regular language, then the limit set ATs, is also regular, and its 
graph is obtained by replacing each arc by a path consisting of 6 arcs. If the original 
arc carries the terminal letter a, all arcs in the path carry the letter a. 

2. TGts!&ic 

A rule f is said to be totalistic (Wolfram 1984a) if, for all integers i and all positive 
integers t ,  there exists a function ftol:  {0,1, .  . . , 2r  + 1) -+ {O, 1) such that 

s ( i , t  + 1) = f(s(i-  r , t ) , s ( i  - r +  1, t ) , .  . .  , s ( i + r , t ) )  
= f t o t ( s ( i  - r , t )  +s( i  - r + 1,t) + .. .+ s(i + . , t ) ) .  (4) 
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In this case, the rule f may be specified by a numerical code 
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For instance, the code of the range-2 rule f defined by 

(5) 
1 
0 otherwise 

if 0 < z1 + z2 + z3 +z4 + c5 < 5 f(% 22>23r z 4 , 4  = 

is C, = 2 + Z2 + 23 + Z4 = 30. 

range-rb totalistic rule Tbf ,  which satisfies the relation (2) 
Given a r a n g e r  totalistic rule f, for all positive integers b,  there exists a unique 

Tbf o H b  = H b  o f .  

Let us first establish this result for r = 1 and b = 2. In this particular case, in 
order to satisfy equation (2) given a totalistic rule f we have to determine a totalistic 
rule T2 f such that  

T2f(Zli zlr 22,z2!23) = T2f(z12 22,223231 23) = f(21, Z2r23) (6) 

for all (z l ,z2,  z3) E {0, lI3. Since f and Tbf  are totalistic, there exist two functions 
ftot: {0 ,1 ,2 ,3)  - {0,1) and T2ftot:{0,1,2,3,4,5) 4 { O , l }  such that 

f(q, 2 2 , 2 3 )  = f tO"tZl + 22 + 23) 
T2f(zl, 223 23, 2 4 1 2 5 )  = T2ftat(21 + z'2 + 2'3 + 2 4  t 2 5 )  

for all zi E { O , l )  ( i  = 1,2 ,3 ,4 ,5) .  From (6), it follows that T2ftot satisfies the 
equations 

T2ft"t(5) = ft"t(3) 

T2ftot(4) = T2ftot(3) = ftot(2) 

T2ftot(2) = T2ftot(l) = f"'(1) 

T2ft0t(O) = / y o ) .  
These relations determine n unique function T2 ftot. If the numerical code of rule f is 

the numerical code of rule T2f is 

cT2, = zOftot(o) + (2l + 22)ft0t(1) + (z3 + z4)ftot(2) + z5ftot(3) 

For instance, if C, = 6 = 2 + Z2 then CTz, = 2 + Z2 + Z3 + Z4 = 30. 
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The result obtained for r = 1 and b = 2 can be extended to all positive integral 
values of r and b .  Given a range-r totalistic rule f such that 

f ( z 1 , 1 2 , .  , , ,22r+l) = f"""q + 2 2  + " '+  z2r+l) 

there exist a unique range-rb totalistic rule T, f that satisfies the equation T,f o H ,  = 
Hb Q f .  If rQ!e Tbf is tot&&, there ex& a f.fictio. Tbf"t s.ch that 

Tbf(zl? 2 2 ,  , . .  1 ~ 2 r b + l )  = Tbf t " t (21  + z2  + '"+ I 2 r b + l )  

then it satisfies the following equations: 

Tbftot(0) = f"'(0) (11) 

T, ftot(2rb + 1) = ftot(Zr + 1) (13) 

Tb ftot  ((Zr - k)b) = . . . = Tbftot ((2r - k - 1)b  + 1) = ftot(2r - k) (12) 

where k in (12) takes the values 0 ,1 , .  . . ,2 r  - 1. From these relations it follows that 
if the numerical code of rule f is 

2r+1 

c, = Z"f'"'(.) 
"=O 

then the numerical code of rule Tb f is 

2r-1 

cTd = 20ftot(o) + z(Zr-k-lP+l ( 2 b - l ) f C o t ( 2 r - k ) + 2 2 r b ~ 1 f c o t ( 2 r + 1 ) .  (15) 
k=O 

The numerical code of rule T, f is easy to derive from the binary representation of the 
numerical code of rule f, If, for instance, f is the range-2 totalistic rule 50 whose 
binary representation is 110010, the binary representation of the nunierical code of 
the range-4 totalistic rule T2f is 1110000110. That  is, CT,, = 902. 

On the set {T,lb E N) of all transformations, i t  is possible to define the following 
combination law: 

This law is associative, there exists an identity, and each element has  a left inverse 
but, in general, no right inverse. 

Note that we have not proved that the limit set of Tb f is N, (A,), hut only that 
this set is invariant under T,f. Since a limit set is a maximal invariant subset, i t  
follows that 

N b  (A,) ' T b J '  

As stated in the introduction, the equality requires another condition: the number of 
sequences of zeros and ones, whose length is not a multiple of b, in any configuration 
S,, generated by T, f after t time steps, tends to zero as t tends to CO. 

Numerical simulations seem to indicate that this latter condition is fulfilled for all 
totalistic rules T, f that satisfy the equation (2). This is probably not too surprising 
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since T,f was not only required to fulfil equation (2), but was also required to be 
totalistic. This strong requirement led to a unique block transform of f :  T, f .  

Consider, for instance, range-I totalistic rule 6, whose spatietemporal pattern is 
represented in figure 2 ( n ) .  Its limit set is a regular language. An infinite word in this 
language, whose grammar is represented in figure l (a) ,  is a concatenation of strings of 
zeros and ones of even lengths. The transform of rule 6 for b = 2 is range2 totalistic 
rule 30. Its limit set is a reguIar language whose grammar is shown in figure l(6) 
(Boccara et a1 199la). If we look carefully at figure Z(b), which represents the spatio- 
temporal pattern generated by the evolution according to  the range2 totalistic rule 30, 
we observe a clear tendency to form rapidly blocks of zeros and ones whose lengths are 
a multiple of 4. This feature is even more evident in figure 2(c). After a contraction 
by a factor two in the space direction, each block of length two is represented by a unit 
square, and block formation explains why the resulting pattern looks similar to the 
pattern corresponding to b = 1 shown in figure 2 ( n ) .  More generally, a configuration 
belonging to the limit set of ranger  totalistic rule 2”+’ - 2, defined by 

N Boccara and M Roger 

consists of alternating sequences of zeros and ones whose lengths are multiple of 2r 
(Boccara et  a1 199la). For example, figure 2 ( d )  represents the spatiwtemporal pattern 
generated by the evolution according to range3 totalistic rule 126 (the transform of 
range-1 totalistic rule 6 for b = 3) with space contraction by a factor three. 

Of course, after a finite number of time steps, block formation is not perfect. In 
many cases, after a few tens of time steps, the only remaining ‘defects’ with respect 
to block formation are simple to describe. This is particularly true for the previous 
examples because their limit sets are easy to characterize (Boccara et  a l  199la). A 
configuration belonging to the attractor of range-1 totalistic rule 6 is a concatenation 
of pairs of zeros and pairs of ones distributed at  random with equal probabilities. After 
a few time steps, the evolution towards the attractor occurs through the elimination of 
defects or ‘kinks’ (Grassberger 1983) of only one type corresponding to odd sequences 
of zeros or ones (figure 2(a)). As shown by Grassberger, these defects exhibit a diffusive 
motion. When two defects meet they annihilate. Their number decreases as t - ’ I2  as a 
function of time t .  For range-r totalistic rule Z2‘+’ - 2, any sequence of zeros or ones, 
whose length e is not a multiple of 2r, contains a defect. A defect is characterized by 
an integer d (0 < d < Zr) equal to e mod 2r. Defects d ,  and d, combine according to 
the law (figures Z(c) and 2 ( d ) )  

d = d,  + d, mod 2r 

Endowed with the above combination law, the set of all possible defects and the ‘null- 
defect’ d = 0 (which represents the absence of any defect) is isomorphic to the cyclic 
group ZJ2r. 

As a trivial generalization to rule 18 studied by Grassberger (1983), these defects 
exhibit a diffusive motion, and their number decreases as t-’” as a function of time. 
Hence, equation (2) with the property that the number of defects tends to 0 as t -+ 00 

implies that Tbf is a block transform o f f  in the sense of equation (1). 
In most cases, the defects are not so easy to characterize and to follow in the 

spatio-temporal patterns because the complexity of the attractor is higher. In many 
cges,  howeverj we have ohserved that the ‘averase number of defects’ nd defined as 
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Figure 2. Spatiotemporalpatlems generated by the evolution according to ( a )  (top 
left) rangel  totalistic rule 6, ( b )  (top right) r a n ~ - 2  totdistic rule 30 with no space 
contraction, ( c )  (bottom left) range-Z totalistic rule 30 with space contraction by a 
factor b = 2, ( d )  (bottom right) range3 totalistic rule 126 with spa- contractim by 
a factor b = 3. Initialconfigurations are random. Numbers in ( b ) ,  ( c )  and ( d )  refer to 
defects; they combine hetween themselves according to the law: d = di + d? mod 27. 
In all spatio-temporal pattema, time is oriented downward. 

the sum of all sequences of zeros and ones, whose length is not a multiple of b,  divided 
by the number of sites, decreases as t - ' '2.  This is sufficient to prove tha t  T, is a block 
transformation. We give two examples. Figures 3(a) and (b) show the spatietemporal 
patterns generated by the evolution of, respectively, range-1 totalistic rule 2 and i ts  
black transform for b = 2, which is range-:! totalistic rule 6, with a space contraction 
by a factor two. Figure 3 ( c )  shows the  average number of defects rid as a function of 
time for the latter. Figures 4(a)-(c) use t h e  same conventions for range-2 totalistic 
rule 50 and its black transform for b = 2, which is range-4 totalistic rule 902. 
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t I 
1 0- 

10: 10: 106 105 
t 

Figure 3. Spatiotemporal patterns gmaated by the evdution according to (a) 
(top left) range-l totalistic rule 2 ,  (b) (top right) range-? totalistic rule 6 with space 
contraction by a factor two. Initial configurations are randomly generated. (c) (bot- 
tom left) Asymptotic behaviour of the average number of defects nd; the size of the 
lattice is ID'; periodic boundary conditions were used. 

3. More general rules 

In the previoussection, given arange-r totalistic rule f ,  we proved that, for all positive 
integers b,  there exists a unique range-rb totaiistic ruie i,f, which satisfies the equation 
Tbf OH, = Hkof. If we do not require rule Tkf to  be totalistie, it is possible to establisb 
the following more general result. 

r b  rules that satisfy the equation T,f OH, = H, o f .  I f f  is not totalistic, none of these 
rules is totalistic. 

Consider first the case r = 1 and b = 2. In order to fulfil the relation Taf 0 H, = 

a r b + ' - ? 2 ' + ' k + ?  range- Given a range-? rule f ,  for all positive integers b ,  there exist 2? 



Block tmnsformations of cellular automaton rules 1857 

'-1 
€ I 

Figure 4. Spatietemporal patterns generated by the evolution according to (a) 
(top left) range-2 totalistic rule 50, (6) (top right) range-4 totalistic rule 902 with 
space contraction by a factor two. Initial configurations are randomly generated. ( c )  
(bottom left) Asymptotic behaviour of the average number 01 defects n d ;  the size of 
the lattice is 10'. 

H ,  o f ,  the range-:! rule T2 f must satisfy (6). That is, for all (z1 ,z2 ,z3)  E {0, 1}3 

T2f(z1,zi,z2,22,23) = T2f(zj ,  z29221231 23) = f(z1122.23). (17) 

These relations do not determine a unique function 

(21; z:? IQ! 22> 2:) ++ TZf(.!, 2 2 %  23' 24) 2 5 ) .  

Only the images of 14 five-tuples ( z l , z 2 , z 3 , z 4 , z 5 )  are determined hy (17). The 
images of the remaining 18 fivetuples are arbitrary. There exist, therefore, 21a rules 
T2f that fulfil the relation T,f o H ,  = H ,  of. 212 of them are legal. If we want T2f to 
be totalistic, then there must exist a function F:{O, 1 , 2 , 3 , 4 , 5 }  -+ {O, 1) such that 

F(Xl + 2 2  + Z3+ X4 + 25) = 
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with 

F ( 0 )  = f ( O , O , O )  
F(1)  = F(2) = f ( O , O ,  1) 

F ( 2 )  = f (0 ,LO)  
F(3) = F(4) = f ( O , l , l )  
F(1) = F(2) = f ( l , O , O )  

F(3) = F(4) = f ( l , l , O )  
F(5) = f ( L L 1 ) .  

f(O,O, 1) = f(0, LO) = f(l,O,O) 

f ( 0 , L  1) = f (1 ,0 ,1)  = f (1 ,1 ,0) .  

F ( ? )  f(],!j,[) - ,-, 

These relations show that F exists if and only if 

That  is, rule Tzf is totalistic if, and only if, f is totalistic. 
In order to  test block formation we have studied the 2l2 = 4096 range-2 legal rules 

corresponding to  range-1 rule 18 for b = 2 on a 8 x lo3 site lattice. For each of these 
rules the average number of defects nd with respect to  block formation was measured 
after lo2 ,  lo3 and lo4 time steps. T h e  results are summarized in figure 5. The full 
curve represents the number n(z) of rules having, after IO3 iterations, a number of 
defects nd smaller than I. The chain curve represents the number n'(z) of rules having, 
after lo3 iterations, a number of defects nd such that z - A+ < nd < z + Az, where 
the finite step Az has been arbitrarily chosen equal to 0.0005. In the limit Az - 0, 
n'(z) is the derivative of n(z) and represents the 'density of rules' having a number 
of defects equal to  z. Three regions can be roughiy distinguished. 

(i) Rules corresponding to region (A) have asmall number of defects: z < 0.03 after 
lo3 time steps. Measurements of nd at lo2,  lo3 and lo4 time steps are compatible with 
a decrease of the number of defects as t - ' l2  as observed in figures 3(c) and 4(c). Such 
rules (about 25% of these 4096 rules) are block transforms of range-1 rule 18 with b = 2. 
In many cases the defects are very simple and obey combination laws as described in 
the previous section. For example, figures 6(aj and ( b )  show, respectiveiy, the spaiio- 
temporal pattern for range-1 rule 18 and range-2 rule 87493422. The defects are 
frequently more complicated, but it is still possible to describe their interactions. For 
example, figure 7(a) shows the spatio-temporal pattern generated by the evolution 
of range-2 rule 769861902, in which some 'extended' defects appear (Boccara e t  a1 
1991b). Their number also decreases as t - ' l2  as t tends to  m (figure 7 ( b ) ) ,  although 
large fluctuations of nd are observed, in relation with the creation and annihilation of 
extended defects (figure 7(a)). 

(ii) Rules corresponding to region (C) generate intricate spatio-temporal patterns 
that look very different from the spatio-temporal pattern generated by range-1 rule 18 
(figure 8). The number of defects nd is larger than 15%. This represents about 60% 
of all 4096 rules. 

(iii) For iiie ruies corresponding i o  tile inierrrrediaie region (3) there is B ieitain 
tendency to block formation in some region of the spatiotemporal pattern, but the 
defects are intricately interwoven and they do not seem to disappear (figure 9), (their 
number is roughly the same after lo2, lo3 and lo4 iterations). 

These results seem to he valid for most block transformations of class-3 range- 
1 legal rules for b = 2. However, in the case of range-1 rule 54 a rather peculiar 
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Figure 5. A study of the 4096 legal range9 rules satisfying the condition Tbf offb = 
H6 of to be block transform with b = 2 of range-l ru le  18. The full curve represents 
the number of rules n(z) having. alter IOW iterations a number of defects nd,  with 
respect to  block-formation, smallel than z. The chain curve represpnts the derivative 
of n(z) or, more precisely, the number of rules having after loo0 iteralions a number 
of defects n d  such that z - 0.0005 < nd < z + 0.0005. Three regions c m  be roughly 
distinguished. Rules corresponding to region ( A )  have a s m d  number ol defects, 
I < 0.03, decressing roughly as t - I l2  88 a function of time; they are block translorms 
of range1 rule 18 (figures 6 and 7). Rules corresponding to region (C) have intricate 
pattans, very different from the pattern generated by the rangel rule 18 (figure 
8 ) .  Rules corresponding to the intermediate region (B) show a certain tendency to 
block formation in some region of the spati-temporal pattem, hut the defects are 
intricatdy interwoven and they do not seem to disappear-their number ia roughly 
constant from 102 to 104 iterations (figure 9). 

Figure 6. Spatietemporal patterns generated by the evolution according to (a) (top 
left) range-] rule 18, (b)  (top right) range-2 rule 87493422 with space contraction 
by a factor two. Initial configurations are randomly generated. Numbers refer to 
defects; they combine according to the law: d = dl  + d2 mod 4. 

behaviour is observed. Configurations generated by the evolulion according to rule 54 
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c 10 o l o b -  . .  . .  

Figure 7 .  (a) (top left) Spatietemporal pattems generated by the evolution ac- 
cording to range2 ru le  769861902 with s p a a  contraction by a factor two. Initial 
configurations are randomly generated. Numbers nfa to defects. Defects 1 and 2 
are  similar to those observed in the previous figure. Defect 3 extends on both sides 
with velocity 1; it can be annihilated through the interaction with other defects. (b) 
(top right) Asymptotic behaGiour of the average number of defeas nd. nd is defined 
h e r e s  the average number of sequences of zeros and ones whose length is not equal 
to 2 modulo 4. The size of the lattice is 10'; since type 3 defects may have large 
extension, values of nd were averagcd over 500 time steps. 

Figure 8. Spatiwtemporal pattern generated by the evolution according to range-2 
ru le  700802830 with space curltraction by a factor two, after IO' iterations. Although 
the equation Tbf o HI, = Hs o f is fulfilled. there is no block formation. 

may be interpreted in terms of particlelike structures evolving in a regular background 
(Boccara el ol 1991b). Starting from a random initial configuration, a spatic-temporal 
pattern generated by this rule is shown in figure 10(a). The background is periodic 
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Figure 9. Spatietemporal pattern generated by the evdution according to range-2 
r u l e  219500334 with space contraction by a facbr two, after lo3 iterations. The 
average number of defezts nd cz 7% does not decrease apprvciably from 10' to IO' 
iterations. 

in space and time, both periods being equal t o  4. Three types of particles may be 
distinguished. Two of them are non-propagating and periodic in time. Their periods 
are equal t o  4. They are denoted, respectively, by g, and go (g stands for 'gutter') 
according to whether they consist of sequences of zeros of even or odd lengths. There 
exists also a propagating particle w (w stands for 'wall'). This particle may propagate 
to the right or to the left. Its velocity is equal to 1. 

For many range-2 legal rules which are block transforms of range1 rule 54, after 
a short transient time, all defects with respect to block formation are 'trapped' in 
the gutters g, as shown in figure 10(b). Hence, the motion of these defects is then 
directly related to the motion of the particles go, ge and w which are not diffusive. 
The number of defects decreases much more slowly than t- ' / ' .  Actually, it decreases 
approximately as 1-7 with 7 << 1/2 (Boccara et al 199lb). 

These results may be extended to all positive integral values of r and b.  Given 
a range-r rule f and a positive integer b,  relations similar to (17) determine the 
images of only Z2'+'b - 2 '(2rb + 1)-tuples' among the 22'bt1. Therefore, there exist 

range-rb rules that fulfil the condition T,f o H ,  = H, o f .  Relations 
similar to (18) show that i f f  is not totalistic none of these rules is totalistic. 

2al'b+l  -2"+Lb+2 

4. Block transformations of arbitrary range 

Given a ranger  rule f and a block size 6 ,  we have found that there exist range-rb rules 
that satisiy the reiation T,i o E, = E, o f .  i n  Fact, for any positive integer E 2 r6, 
there exist range-R rules that fulfil the condition T,f o H ,  = H ,  o f .  

We shall establish this result for r = 1, b = 2 and R = 3. The generalization IS 
straightforward. 

In order to fulfil the condition T,f o H ,  = H ,  o f ,  the range3 rule T2f must 
satisfy the following relations, which are the analogue of (6). That  is, for all 
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Figure 10. Spatiotemporal pattems generated by the evolution according to (a) 
(lop left) rangel rule 54; it can be described through 'particles' as 'walls' (v), and 
even (9.) and odd (8.) 'gutters', inkracting on aperiodic background. ( 6 )  (top right) 
range2 rule 118167626 with space contraction by a factor two, after 90 time steps. 
Initial configuration were randomly generated. After a few tens of time steps, the 
only remaining defects are  st and g; which can be considered to be even 'gutters' 
which have trapped complementary defects. 

(zl, z2, z3, z4, 2 5 )  E {o, u5 
T 2 f ( 2 1 , 2 2 ~ 2 2 , z 3 , z 3 ~ 2 4 ,  2 4 )  = T2f (22 ,22?23!  23,z4r24rZ5) = f(z21Z3124). (l9) 

These relations do  not determine a unique function 

m I, 

( Z 1 , 2 2 ,  23, z43z51%j,z7) 1 2 1 ( 2 1 ,  2 2 .  Z 3 , Z 4 , z g r  Z6,27). 

Only the images of 30 'seven-tuples' (z l r  z2 ,z3 ,z4 ,z5 ,z6 ,  z7) are determined by (19). 
The images of the remaining 98 'seven-tuples' are arbitrary. There exist, therefore, 
Z9* rules T2f that  fulfil the condition T b f o H b  = H b o f .  If we want T2f to be totalistic, 
then there must exist afunction F:{0,1,2,3,4,5,6,7} + {O,l} such that 

F ( z i + ~ 2 + z 3 + 2 4 + 2 g + 2 ~ + 2 1 ) = ~ 2 f ( z 1 ~ ~ 2 , 2 3 , ~ 4 ~ 2 5 , 2 6 , 2 1 )  

with 

F ( 0 )  = F(l) = f ( O , O , O )  
F ( 2 )  = F(3) = f ( O , O , l )  
F ( 2 )  = F(3) = f(O,l,O) 
F(4) = F ( 5 )  = f(0,1,1) 
F ( 2 )  = F(3) = f(l,O,O) 
F(4) = F(5) = f ( l ,O, l )  
F(4) = F ( 5 )  = f ( l , l ,O)  
F ( 6 )  = F(7)  = f ( l , l , l ) .  
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These relations show that F exists if and only if 

f (O,O, l )=f (0 ,190)= f(L0,O) 

f (0 ,1 ,1)  = f ( 1 , 0 > 1 )  = f ( L L 0 )  

That is, rule Tz f is totalistic if and only i f f  is totalistic. 

rule Tz f. If the numerical code of rule f is 
!f < & + , + ~ l & + ; ~  -al.,+:,...- f?n\ -h -... &h"& &h--- ~ -"--- I &-*..I:-&:- , .D " V " ( I . Y Y L I . ,  L L I O I Y I Y I I D  \*", DllY.7 *,,am, C l l C L C  GA1DLI - u,,,yur; 'OlLbC" Y " l e * I I D Y l b  

where ftot is such that,  for all (z1,z2,z3) E {0, 1}3 

f ( z I , Z Z , z 3 )  =f""tz, +z,+z,) 

the numerical code of rule Tz f is 

CT2, = i'p + 2!ji""'io) + i2? + 2"jjt"t(ij + (p + 2:jjt"ttjj + i 2 6  + .j'jj":(3j 

For instance, if C, = 6 = 2 + 2' then CT2, = 2z + 23 + Z4 + 25 = 60. 
The generalization of all these results is not very difficult: given a range-r rule f 

and an integer b > 1, for all positive integers R > rb, there exist range-R rules that 
satisfy the equation T,f o Hb = H ,  o f .  If f is not totalistic, none of these rules is 
totalistic. I f f  is totalistic, then there exists a unique totalistic range-R rule Tb f that 
fulfils the condition T,f o Hb = H, of .  

As  in the previous section i t  is difficult to find further criteria to identify, among 
all the rules obeying the equation T,f o Hb = H ,  o f ,  the rules that are really block 
transforms. By imposing more constraints on T,f i t  has, however, been possible to 
define a particular non-totalistic block transform. This particular block transformation 
has been defined and studied in a recent paper by Boccara (1989). It is characterized 
by a positive odd integer b. In order to build up  this transformation T,, consider the 
set 

{ s ( j - ( b -  1 ) / 2 , t ) , ~ L i -  (b-3) /2 , t ) ,  ..., s ( j+(b-  1)/2,t)l 

which constitutes a block of site variables at t imet.  Its length is b, and it  is centred a t  
j .  To a block centred at  j associate B ( j , t ) ,  called a block variable, such that (majority 
rule) 

where 

Sb(j , t)  = ~ ( j -  ( b -  1 ) / 2 , t ) + ~ ( j  - ( b -  3) /2 , t )+.  .+ s ( j + ( b -  1) /2 , t ) .  

With a range-r rule f associate a range-rb + ( 6  - 1)/2 rule T,f, i.e. a rule involving 
a (Zr + 1)b neighbourhood, defined as follows. Divide the (2r + l ) b  site variables in 
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2r + 1 blocks of length b.  For each block determine the value of the corresponding 
block variable. Then the value at  time t + 1 of site variable s ( i , t  + 1) given by rule 
Tb f is, by definition, given by rule f applied to the block variables centred at I + Ib, 
where I = -r, -(r - l), . . . , r, at  time t .  For example, the transform of range-1 rule 18 
for b = 3 is the range-4 rule T3f,, such that 

N Boccara and M Roger 

T3f(z1, z2,.  . . ,z9, \ - 1  - I 

if and only if 

x , + z 2 + z 3 < ;  z , + x , + z , < ;  z , + x g + x g > ~  

or 

5. Conclusion 

Given a rule f ,  with limit set A, and a positive integer b,  the rule T b f  is a block 
transform o f f  if its limit set ATb, satisfies the celation (1) 

where the mapping H,: S -+ S is a homomorphism defined by 

( V . .  . zyz.. . E 8) Hb(. . . z y t  . . .) = . . . .byb*'. . . 

z' stands for z repeated b times; for instance, x3 = zzz 
The condition ( 2 )  

T,f o H ,  = H ,  o f  

to be satisfied for a block transform Tb f to exist does not completely determine qf 
i f f  is not totalistic. I f f  is totalistic, there exists a unique Tbf,  and it seems that in 
this case condition (2) is sufficient. I f f  is not totalistic, condition ( 2 )  is not sufficient. 
Among the very large number of rules satisfying equation (2), only a fraction seems 
to be block transforms and none of them is totalistic. The range of a block transform 
Taf may be any integer greater than or equal to rb. 

The evolution according to a block transform Tb f towards its limit set has been 
discussed in terms of annihilating defects. These defects are often simply related to 
the defects characterizing the evolution according to rule f. 
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